Pre_GI: SWBIT SVG BLASTP

Query: NC_009802:647901 Campylobacter concisus 13826, complete genome

Lineage: Campylobacter concisus; Campylobacter; Campylobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: Campylobacter concisus 13826 is a gastrointestinal clinical isolate. Members of this genus are one of the most common causes of bacterial gastroenteritis (campylobacteriosis). Usually the symptoms are abdominal pain, fever, diarrhea, and cramps, but the illness can sometimes be fatal and some infected individuals develop a syndrome (Guillain-Barre) in which the nerves connecting the spinal cord to the brain are damaged. C. jejuni is the main cause of campylobacteriosis, but other species can also cause infection, including C. coli, C. upsaliensis, and C. concisus. Campylobacter concisus was first isolated from the human oral cavity in cases of gingivitis; however the role it plays in periodontal disease is unclear. This organism has also been isolated from children and immunocompromised patients with gastrointestinal disease. C. concisus is a genetically diverse species, comprised of at least four genomospecies.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007517:2564361 Geobacter metallireducens GS-15, complete genome

Lineage: Geobacter metallireducens; Geobacter; Geobacteraceae; Desulfuromonadales; Proteobacteria; Bacteria

General Information: First isolated from the Potomac river downstream of Washington, DC, USA in 1987. This organism actively moves towards metal attractants such as iron and manganese oxides, which are insoluble, and produces type IV pili for attachment to the insoluble substrates. Common metal-reducing bacterium. This organism, similar to what is observed in Geobacteria sulfurreducens, couples the oxidation of organic molecules to the reduction of iron by using insoluble Fe (III) as an electron acceptor under anaerobic conditions. This bacterium plays an imporant part of the nutrient cycling in aquatic environments. The cell can also use uranium and plutonium, therefore, this organism and may be important for the bioremediation of contaminated waste sites.