Pre_GI: SWBIT SVG BLASTP

Query: NC_009699:1 Clostridium botulinum F str. Langeland chromosome, complete genome

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: Clostridium botulinum F strain Langeland was identified in 1958 from home-prepared liver paste involved in an outbreak of foodborne botulism on the island of Langeland, in Denmark. Produces botulinum, one of the most potent toxins known. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin. Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007912:909112 Saccharophagus degradans 2-40, complete genome

Lineage: Saccharophagus degradans; Saccharophagus; Alteromonadaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain is a marine gamma-proteobacterium that was isolated from decaying Spartina alterniflora, a salt marsh cord grass, in the Chesapeake Bay, USA. Saccharophagus degradans 2-40 has been used to produce ethanol from plant material and may be useful for the production bioethanol. Bacterium able to degrade complex carbohydrates. Saccharophagus degradans is capable of degrading insoluble complex carbohydrates through the collective action of enzyme complexes found on its cell surfaces, utilizing the degradation products as a carbon source. This organism may be useful in bioremediation. The degradative enzymes this organism produces are typically exoenzymes that are collected and organized into large surface complexes termed cellulosomes.