Pre_GI: SWBIT SVG BLASTP

Query: NC_009697:3291500 Clostridium botulinum A str. ATCC 19397 chromosome, complete

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: Clostridium botulinum A ATCC 19397 (NCTC 4587, NCTC 7272) is a stock, type A toxin-producing, laboratory strain of known toxicity. Produces botulinum, one of the most potent toxins known. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin. Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_003366:2143173 Clostridium perfringens str. 13, complete genome

Lineage: Clostridium perfringens; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain is a type A isolate from the soil. It can establish gas gangrene in a murine experimental model. Causative agent of gas gangrene. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism is a causative agent of a wide spectrum of necrotic enterotoxicoses. It also causes such animal diseases as lamb dysentery, ovine enterotoxemia (struck), pulpy kidney disease in lambs and other enterotoxemias in lambs and calves. It is commonly found in the environment (soil, sewage) and in the animal and human gastrointestinal tract as a member of the normal microflora. It is a fast growing (generation time 8-10 min) anaerobic flesh-eater. Active fermentative growth is accompanied by profuse generation of molecular hydrogen and carbon dioxide. It is also oxygen tolerant which makes it an easy object to work with in laboratories. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. All types produce the alpha toxin (phospholipase C). Type A strains that cause gas gangrene produce alpha toxin, theta (hemolysin), kappa (collagenase), mu (hyaluronidase), nu (DNAse) and neuraminidase which are all the enzymatic factors aiding the bacterium in invading and destruction of the host tissues. Type C strains produce alpha toxin, beta toxin and prefringolysin enteritis. In addition to alpha toxin, Type B strains produce beta toxin, types B and D produce the pore forming epsilon toxin and type E strains produce iota toxin.