Pre_GI: SWBIT SVG BLASTP

Query: NC_009648:3192483 Klebsiella pneumoniae subsp. pneumoniae MGH 78578, complete genome

Lineage: Klebsiella pneumoniae; Klebsiella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated from a patient in 1994. Opportunistic pathogen that causes multiple hospital-acquired infections. This organism is the most medically important organism within the genus Klebsiella. It is an environmental organism found in water, soil, and on the surface of plants. Several strains have been isolated from plant tissues and are nitrogen-fixing endophytes that may be a source of nitrogen for the plant. Other strains can become opportunistic pathogens which infect humans, and typically causes hospital-acquired infections in immunocompromised patients. Major sites of infection include the lungs, where it causes a type of pneumonia, and urinary tract infections. Klebsiella can also enter the bloodstream (bacterimia) and cause sepsis. The pathogen can also infect animals and cause inflammation of the uterus in horses as well as more generalized infections in other mammals. This organism expresses numerous pathogenicity factors, including multiple adhesins, capsular polysaccharide, siderophores, and lipopolysaccharide for the evasion of host defenses. The multiple antibiotic resistance genes carried on the chromosome inhibit efforts to clear the organism from infected patients via antibiotic use.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_016047:261304 Bacillus subtilis subsp. spizizenii TU-B-10 chromosome, complete

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system. The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.