Pre_GI: SWBIT SVG BLASTP

Query: NC_009513:1363987 Lactobacillus reuteri F275, complete genome

Lineage: Lactobacillus reuteri; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This strain (JCM 1112, F275) is the type strain for the species. It is a human isolate, which is unable to colonize the intestinal tract of mice. Normal gut bacterium. They are commonly found in the oral, vaginal, and intestinal tracts of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, and other products such as fermented milks, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully cultivated, created, and maintained. These cultures produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also used as a starter molecule for complex organic molecule syntheses. Lactobacillus reuteri is a member of the normal microbial community of the gut in humans and animals. This organism produces antibiotic compounds, such as reutericin and reuterin, which have inhibitory effects on pathogenic microorganisms.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007677:3316540 Salinibacter ruber DSM 13855, complete genome

Lineage: Salinibacter ruber; Salinibacter; Rhodothermaceae; Bacteroidetes Order II; Bacteroidetes; Bacteria

General Information: This organism is an extremely halophilic aerobe originally isolated from saltern crystallizer ponds in Spain. These bacteria can coexist in significant colonies with halophilic archaea under saline conditions. In contrast to other bacteria they do not regulate their intracellular salt conditions through proton pumps, but instead their protein makeup has adapted to be functional under high ionic conditions.