Pre_GI: SWBIT SVG BLASTP

Query: NC_009465:29735 Candidatus Vesicomyosocius okutanii HA, complete genome

Lineage: Calyptogena okutanii thioautotrophic gill symbiont; sulfur-oxidizing symbionts; ; sulfur-oxidizing symbionts; Proteobacteria; Bacteria

General Information: This strain was collected off Hatsushima island in Sagami Bay, Japan. Calyptogena okutanii (deep-sea clam) thioautotrophic gill symbiont. The bivalve marine species Calyptogena okutanii depends on sulfur-oxidizing symbiotic bacteria housed in its gill tissues for its sole nutritional support. The symbiont is transmitted vertically between generations via the clam's eggs. This anaerobic symbiosis oxidizes hydrogen sulfide as an energy source and fixes carbon dioxide into organic compounds.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_014014:153837 Mycoplasma crocodyli MP145 chromosome, complete genome

Lineage: Mycoplasma crocodyli; Mycoplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria

General Information: Mycoplasma crocodyli was isolated from the joint of a crocodile with exudative polyarthritis. The siblingspecies of M. crocodyli, Mycoplasma alligatoris causes acute lethalprimary infection of susceptible hosts, notably American alligators.This pathogen is studied to understand the mechanisms and evolutionaryorigins of that virulence. A genome survey indicated that M. alligatorisuses sialidase (Nanl) and hyaluronidase (NagH) to generate fuel forglycolysis from host cell glycans. M. crocodyli, which does not causedisease in American alligators, possesses NagH but not Nanl, so damageto the host's extracellular matrix alone cannot explain the particularvirulence of M. alligatoris.