Pre_GI: SWBIT SVG BLASTP

Query: NC_009465:29735 Candidatus Vesicomyosocius okutanii HA, complete genome

Lineage: Calyptogena okutanii thioautotrophic gill symbiont; sulfur-oxidizing symbionts; ; sulfur-oxidizing symbionts; Proteobacteria; Bacteria

General Information: This strain was collected off Hatsushima island in Sagami Bay, Japan. Calyptogena okutanii (deep-sea clam) thioautotrophic gill symbiont. The bivalve marine species Calyptogena okutanii depends on sulfur-oxidizing symbiotic bacteria housed in its gill tissues for its sole nutritional support. The symbiont is transmitted vertically between generations via the clam's eggs. This anaerobic symbiosis oxidizes hydrogen sulfide as an energy source and fixes carbon dioxide into organic compounds.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_002932:296557 Chlorobium tepidum TLS, complete genome

Lineage: Chlorobaculum tepidum; Chlorobaculum; Chlorobiaceae; Chlorobiales; Chlorobi; Bacteria

General Information: This green-sulfur bacterium is a thermophile and was isolated from a New Zealand high-sulfide hot spring. Photosynthetic thermophile. Chlorobium tepidum is a member of the green-sulfur bacteria. It has been suggested that the green-sulfur bacteria were among the first photosynthetic organisms since they are anaerobically photosynthetic and may have arisen early in the Earth's history when there was a limited amount of oxygen present. This organism utilizes a novel photosynthetic system, and harvests light energy using an unusual organelle, the chlorosome, which contains an aggregate of light-harvesting centers surrounded by a protein-stabilized galactolipid monolayer that lies at the inner surface of the cytoplasmic membrane. Unlike many other photosynthetic organisms, the green-sulfur bacteria do not produce oxygen and tolerate only low levels of the molecule. This organism also fixes carbon dioxide via a reverse tricarboxylic acid cycle, using electrons derived from hydrogen or reduced sulfur to drive the reaction, instead of via the Calvin cycle like many other photosynthetic organisms.