Query: NC_009328:2161116 Geobacillus thermodenitrificans NG80-2 chromosome, complete genome
Lineage: Geobacillus thermodenitrificans; Geobacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria
General Information: Geobacillus thermodenitrificans NG80-2 was isolated from oil reservoir formation water taken at a depth of 2000 m and a temperature of 73 degrees C. This strain can use crude oil as a sole carbon source and can degrade 16 to 36 carbon alkanes. Geobacillus thermodenitrificans NG80-2 produces an emulsifier which may be useful for high temperature biodegradation or other industrial purposes. Members of this genus were originally classified as Bacillus. Recent rDNA analysis and DNA-DNA hybridization studies using spore-forming thermophilic subsurface isolates provided enough evidence to define the phylogenetically distinct, physiologically and morphologically consistent taxon Geobacillus. Geobacillus species are chemo-organotrophic, obligately thermophilic, motile, spore-forming, aerobic or facultatively anaerobic.
Subject: NC_011883:2031222 Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774,
Lineage: Desulfovibrio desulfuricans; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria
General Information: Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774 was isolated from the rumen of a sheep. D. desulfuricans reduces sulfate to sulfide found in soil, freshwater, saltwater and the intestinal tract of animals. This organism grows anaerobically and utilizes a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite, as well as others. The nitrate reduction pathway is not expressed while sulfate is available. Alternatively, the sulfate reduction pathway is constitutively expressed when the cells are growing with nitrate reduction. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making this organism of interest as bioremediator. Metal corrosion, a problem that is partly the result of the collective activity of this bacterium, results in billions of dollars in losses each year to the petroleum industry. This organism is responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products.