Pre_GI: SWBIT SVG BLASTP

Query: NC_009328:2161116 Geobacillus thermodenitrificans NG80-2 chromosome, complete genome

Lineage: Geobacillus thermodenitrificans; Geobacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Geobacillus thermodenitrificans NG80-2 was isolated from oil reservoir formation water taken at a depth of 2000 m and a temperature of 73 degrees C. This strain can use crude oil as a sole carbon source and can degrade 16 to 36 carbon alkanes. Geobacillus thermodenitrificans NG80-2 produces an emulsifier which may be useful for high temperature biodegradation or other industrial purposes. Members of this genus were originally classified as Bacillus. Recent rDNA analysis and DNA-DNA hybridization studies using spore-forming thermophilic subsurface isolates provided enough evidence to define the phylogenetically distinct, physiologically and morphologically consistent taxon Geobacillus. Geobacillus species are chemo-organotrophic, obligately thermophilic, motile, spore-forming, aerobic or facultatively anaerobic.

No Graph yet!

Subject: NC_007880:290059 Francisella tularensis subsp. holarctica, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: This strain (live vaccine strain) was created in the 1960's in the USA and provides protection against tularemia in animal models as well as in humans. Causative agent of tularemia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.