Pre_GI: SWBIT SVG BLASTP

Query: NC_009256:2725836 Burkholderia vietnamiensis G4 chromosome 1, complete sequence

Lineage: Burkholderia vietnamiensis; Burkholderia; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: B. vietnamiensis strain G4 (formerly B.cepacia strain R1808) is the best trichloroethene (TCE) co-oxidizing strain yet discovered, having been isolated from an industrial waste treatment facility at Pensacola Naval Air Station, Florida, U.S.A. Burkholderia vietnamiensis is a member of the Burkholderia cepacia complex which contains a number of closely related Burkholderia species. Burkholderia vietnamiensis is commonly isolated from soil and water and has been studied as a plant growth promoting bacterium and as a bioremediation agent for aromatic hydrocarbons such as benzene and tolulene.

No Graph yet!

Subject: NC_015709:1769806 Zymomonas mobilis subsp. pomaceae ATCC 29192 chromosome, complete

Lineage: Zymomonas mobilis; Zymomonas; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: Country: United Kingdom; Isolation: Sick cider; Temp: Mesophile. The natural habitat of this organism includes sugar-rich plant saps where the bacterium ferments sugar to ethanol. The high conversion of sugars to ethanol makes this organism useful in industrial production systems, particularly in production of bioethanol for fuel. A recombinant strain of this bacterium is utilized for the conversion of sugars, particularly xylose, which is not utilized by another common sugar-fermenting organism such as yeast, to ethanol. Since xylose is a common breakdown product of cellulose or a waste component of the agricultural industry, it is an attractive source for ethanol production. Zymomonas mobilis was chosen for this process as it is ethanol-tolerant (up to 120 grams of ethanol per litre) and productive (5-10% more ethanol than Saccharomyces). This bacterium ferments using the Enter-Doudoroff pathway, with the result that less carbon is used in cellular biomass production and more ends up as ethanol, another factor that favors this organism for ethanol production.