Pre_GI: SWBIT SVG BLASTP

Query: NC_009092:179226 Shewanella loihica PV-4, complete genome

Lineage: Shewanella loihica; Shewanella; Shewanellaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain is an environmental isolate from the Naha Vents, Hawaii, in the Pacific Ocean. Psychrotolerant bacterium. This genus includes species that inhabit a wide range of environments and are capable of utilizing a wide variety of electron acceptors during anaerobic respiration including some insoluble metal oxides while using very few carbon sources such as lactate or acetate. This group of organisms have been studied extensively for their electron transport systems. Shewanella loihica is a psychrotolerant deep sea bacterium. This organism is able to reduce iron, manganese and uranium and may be useful for bioremediation at low temperatures.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_003304:51048 Agrobacterium tumefaciens str. C58 chromosome circular, complete

Lineage: Agrobacterium tumefaciens; Agrobacterium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Gram-negative soil bacterium. This is the most widely studied species in the genus. Strains of Agrobacterium are classified in three biovars based on their utilisation of different carbohydrates and other biochemical tests. The differences between biovars are determined by genes on the single circle of chromosomal DNA. Biovar differences are not particularly relevant to the pathogenicity of A. tumefaciens, except in one respect: biovar 3 is found worldwide as the pathogen of gravevines. This species causes crown gall disease of a wide range of dicotyledonous (broad-leaved) plants, especially members of the rose family such as apple, pear, peach, cherry, almond, raspberry and roses. Because of the way that it infects other organisms, this bacterium has been used as a tool in plant breeding. Any desired genes, such as insecticidal toxin genes or herbicide-resistance genes, can be engineered into the bacterial DNA, and then inserted into the plant genome. This process shortens the conventional plant breeding process, and allows entirely new (non-plant) genes to be engineered into crops.