Pre_GI: SWBIT SVG BLASTP

Query: NC_009049:80184 Rhodobacter sphaeroides ATCC 17029 chromosome 1, complete sequence

Lineage: Rhodobacter sphaeroides; Rhodobacter; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: A photosynthetic bacterium useful in bioremediation. Anoxygenic photosynthesis, Carbon fixation, Nitrogen fixation. Bacteria belonging to the Rhodobacter group are metabolically versatile as they are able to grow using photosynthesis, chemosynthesis, and usually can grow under both anaerobic and aerobic conditions. It can grow aerobically and anaerobically in the light and anaerobically in the dark. It produces an intracytoplasmic membrane system consisting of membrane invaginations where the light harvesting complexes (LH1 and LH2) and the reaction center are synthesized.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_003305:1297785 Agrobacterium tumefaciens str. C58 chromosome linear, complete

Lineage: Agrobacterium tumefaciens; Agrobacterium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Gram-negative soil bacterium. This is the most widely studied species in the genus. Strains of Agrobacterium are classified in three biovars based on their utilisation of different carbohydrates and other biochemical tests. The differences between biovars are determined by genes on the single circle of chromosomal DNA. Biovar differences are not particularly relevant to the pathogenicity of A. tumefaciens, except in one respect: biovar 3 is found worldwide as the pathogen of gravevines. This species causes crown gall disease of a wide range of dicotyledonous (broad-leaved) plants, especially members of the rose family such as apple, pear, peach, cherry, almond, raspberry and roses. Because of the way that it infects other organisms, this bacterium has been used as a tool in plant breeding. Any desired genes, such as insecticidal toxin genes or herbicide-resistance genes, can be engineered into the bacterial DNA, and then inserted into the plant genome. This process shortens the conventional plant breeding process, and allows entirely new (non-plant) genes to be engineered into crops.