Query: NC_008800:3123495 Yersinia enterocolitica subsp. enterocolitica 8081 chromosome, Lineage: Yersinia enterocolitica; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria General Information: This isolate (strain 8081; NCTC 13174) is a mouse-lethal serotype of Yersinia enterocolitica that contains a high pathogenicity island (HPI) that encodes an iron uptake system (yersiniabactin) and a type II secretion system. Causes gastroenteritis. Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. This species is a food and waterborn pathogen that causes gastroenteritis (inflammation of the mucous membranes of the stomach and intestine) and is able to proliferate at temperatures as low as 4 degrees C.
- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark); - hypothetical protein; - cds: hover for description
General Information: This is a serogroup A strain isolated in Gambia in 1983. Causes septicemia and meningitis. The second of two pathogenic Neisseria, this organism causes septicemia and is the leading cause of life-threatening meningitis (inflammation of the meninges, the membrane surrounding the brain and spinal cord) in children. This organism typically residies in the nasopharynx cavity but can invade the respiratory epthelial barrier, cross into the bloodstream and the blood brain barrier, and cause inflammation of the meninges. Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). Pathogenicity factors include the surface proteins (porins and opacity proteins), and the type IV pilus (which is also found in Neisseria gonorrhoeae). This organism, like Neisseria gonorrhoeae, is naturally competent, and protein complexes at the cell surface recognize the uptake signal sequence in extracellular DNA, an 8mer that is found at high frequency in Neisseria chromosomal DNA.