Pre_GI: SWBIT SVG BLASTP

Query: NC_008751:1431905 Desulfovibrio vulgaris subsp. vulgaris DP4, complete genome

Lineage: Desulfovibrio vulgaris; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: A sulfate reducing bacterium. These organisms typically grow anaerobically, although some can tolerate oxygen, and they utilize a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making these organisms of interest as bioremediators. Metal corrosion, a problem that is partly the result of the collective activity of these bacteria, produces billions of dollars in losses each year to the petroleum industry. These organisms are also responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products. This species is a sulfate reducer commonly found in a variety of soil and aquatic environments.

No Graph yet!

Subject: NC_007517:1515493 Geobacter metallireducens GS-15, complete genome

Lineage: Geobacter metallireducens; Geobacter; Geobacteraceae; Desulfuromonadales; Proteobacteria; Bacteria

General Information: First isolated from the Potomac river downstream of Washington, DC, USA in 1987. This organism actively moves towards metal attractants such as iron and manganese oxides, which are insoluble, and produces type IV pili for attachment to the insoluble substrates. Common metal-reducing bacterium. This organism, similar to what is observed in Geobacteria sulfurreducens, couples the oxidation of organic molecules to the reduction of iron by using insoluble Fe (III) as an electron acceptor under anaerobic conditions. This bacterium plays an imporant part of the nutrient cycling in aquatic environments. The cell can also use uranium and plutonium, therefore, this organism and may be important for the bioremediation of contaminated waste sites.