Pre_GI: SWBIT SVG BLASTP

Query: NC_008609:206313 Pelobacter propionicus DSM 2379, complete genome

Lineage: Pelobacter propionicus; Pelobacter; Pelobacteraceae; Desulfuromonadales; Proteobacteria; Bacteria

General Information: Common environmental anaerobe. The genus Pelobacter encompasses a unique group of fermentative microorganisms in the delta-proteobacteria. This species is ubiquitous in both marine and fresh water, and in anaerobic sedmiments. It is able to convert the unsaturated hydrocarbon acetylene to to acetate and ethanol via acetylaldehyde as an intermediate. These microorganisms may survive in some sediments as an Fe(III) or elemental sulfur reducer as well as growing fermentatively as an ethanol-oxidizing acetogen.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_002936:1004570 Dehalococcoides ethenogenes 195, complete genome

Lineage: Dehalococcoides mccartyi; Dehalococcoides; Dehalococcoidaceae; Dehalococcoidales; Chloroflexi; Bacteria

General Information: Dechlorinates tetrachloroethene. This organism was isolated from environments contaminated with organic chlorinated chemicals such as tetrachloroethene (PCE) and trichloroethane (TCE), common contaminants in the anaerobic subsurface. There are at least 15 organisms from different metabolic groups, halorespirators, acetogens, methanogens and facultative anaerobes, that are able to metabolize PCE. Some of these organisms couple dehalogenation to energy conservation and utilize PCE as the only source of energy while others dehalogenate tetrachloroethene fortuitously. This non-methanogenic, non-acetogenic culture is able to grow with hydrogen as the electron donor, indicating that hydrogen/PCE serves as an electron donor/acceptor for energy conservation and growth. This organism can only grow anaerobically in the presence of hydrogen as an electron donor and chlorinated compounds as electron acceptors. Dehalococcoides ethenogenes is typically found at sites contaminated with chlorinated solvents, and have been independently isolated in dozens of sites across the USA.