Pre_GI: SWBIT SVG BLASTP

Query: NC_008526:343445 Lactobacillus casei ATCC 334, complete genome

Lineage: Lactobacillus casei; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This strain was isolated from Emmental cheese. Starter culture for milk fermentation and flavor development of cheese. They are commonly found in the oral, vaginal, and intestinal regions of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, fermented milks, and other products, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully created, cultivated, and maintained, which produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also being used as a starter molecule for complex organic molecule syntheses. Lactobacillus casei is used as a starter culture during milk fermentation and for the flavor development of certain bacterial-ripened cheeses.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008528:331260 Oenococcus oeni PSU-1, complete genome

Lineage: Oenococcus oeni; Oenococcus; Leuconostocaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This strain was isolated at Penn State University, USA and is used commercially for malolactic fermentation in wines. Lactic acid bacterium used in wine production. Oenococcus oeni is another member of the lactic acid bacteria and it occurs naturally in marshes and similar environments. It carries out malolactic conversion during secondary fermentation in wine production which is the conversion of malic acid to lactic acid with a concomitant rise in pH, making the wine microbiologically stable and enhancing the sensory properties of the wine (aroma, flavor, and texture). The organism's high tolerance to sulfite and ethanol mean that it will be the predominant organism in the wine at the end of fermentation where it cleans up the remaining sugars and converts the bitter-tasting malic acid.