Pre_GI: SWBIT SVG BLASTP

Query: NC_008525:108687 Pediococcus pentosaceus ATCC 25745, complete genome

Lineage: Pediococcus pentosaceus; Pediococcus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: Use in fermentation of food products. A distinctive characteristic of pediococci is their ability to form tetrads via cell division in two perpendicular directions in a single plane. Like other lactic acid bacteria, species of Pediococcus are acid tolerant, cannot synthesize porphyrins, and possess a strictly fermentative (homofermentative) facultatively anaerobic metabolism with lactic acid as the major metabolic end product. They also occur in such food products as cured meat, raw sausages, and marinated fish, and are are used for biotechnological processing and preservation of foods. This bacterium can be isolated from a variety of plant materials and bacterial-ripened cheeses. This organism is used as an acid producing starter culture in the fermentation of some sausages, cucumbers, green beans, soy milk, and silage. Some strains have been reported to contain several (3-5) resident plasmids that render the bacterium capable of fermenting some sugars (raffinose, melibiose, and sucrose), as well as producing bacteriocins.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008380:58232 Rhizobium leguminosarum bv. viciae 3841, complete genome

Lineage: Rhizobium leguminosarum; Rhizobium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This biovar nodulates legumes in the Tribe Viciae (Vicia, Pisum, Lathyrus, Lens). This strain is a spontaneous streptomycin-resistant mutant of strain 300. Nitrogen-fixing plant symbiont. This organism, like other Rhizobia, establishes a symbiotic relationship with a legume plant, providing nitrogen in exchange for a protected environment. The legume roots secrete flavonoids and isoflavonoids which the bacteria recognize and use to turn on genes involved in root nodulation. Many of the root nodulation genes are involved in synthesis and secretion of a nodule inducing signal, a lipochito-oligosaccharide molecule, which the plant recognizes, triggering nodule formation. The bacterium is endocytosed and exists inside a membrane bound organelle, the symbiosome, and fixes nitrogen for the plant cell while the host cell provides carbon compounds for the bacterium to grow on. The nitrogen fixation is important as it obviates the need for expensive and environmentally damaging fertilizer use.