Pre_GI: SWBIT SVG BLASTP

Query: NC_008435:4842720 Rhodopseudomonas palustris BisA53, complete genome

Lineage: Rhodopseudomonas palustris; Rhodopseudomonas; Bradyrhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Four different strains were isolated from 2 sites, one pristine and one polluted. Environmental bacterium with potential use in bioremediation. This organism has a diverse metabolism and is capable of growth using light, inorganic, or organic compounds as energy sources and carbon dioxide or organic compounds as carbon sources. Commonly found in soil and water environments this bacterium is also capable of degrading a wide range of toxic organic compounds, and may be of use in bioremediation of polluted sites. The bacterium undergoes differentiation to produce a stalked nonmotile cell and a motile flagellated cell. In the presence of light, this bacterium produces a number of intracellular membranous vesicles to house the photosynthetic reaction centers.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007426:205390 Natronomonas pharaonis DSM 2160, complete genome

Lineage: Natronomonas pharaonis; Natronomonas; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: Isolated from Lake Gabara in Egypt. Extreme haloalkaliphilic archeon. Natronomonas pharaonis is able to survive at high salt and pH conditions which results in limited nitrogen availability through ammonium. In order to compensate for this, Natronomonas pharaonis has developed three systems to promote nitrogen assimilation: direct uptake of ammonia, uptake of nitrate, and uptake of urea. Another problem with high pH environments is the use of a proton gradient for the generation of ATP, which other alkaliphiles have adapted to by substitution of sodium ions for protons. However, this organism utilizes protons for ATP generation as determined by experimental data.