Pre_GI: SWBIT SVG BLASTP

Query: NC_008369:1702885 Francisella tularensis subsp. holarctica OSU18, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: Isolated from a beaver that died of tularemia in Oklahoma in 1978. Causative agent of tularemia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_012483:3731542 Acidobacterium capsulatum ATCC 51196, complete genome

Lineage: Acidobacterium capsulatum; Acidobacterium; Acidobacteriaceae; Acidobacteriales; Acidobacteria; Bacteria

General Information: Isolated from acidic mine drainage in Yanahara mine, Okayama, Japan. Acidophilic bacterium. This genus comprises a number of species commonly found in water reservoirs, microbial mats, many different soil types, marine and freshwater sediments, as well as in hot-spring mats and sediments, etc. Furthermore, they sometimes form the dominant group in a habitat. These bacteria are involved in the first step of destruction of biologically complex molecules produced by autotrophic (capable of synthesizing their own nutrients) microorganisms. Acidobacterium capsulatum is an aerobic, mesophilic, chemo-organotroph able to use a variety of carbon sources and to grow up to pH 6.0. The species comprises several strains characterized by orange pigmentation, production of menoquinones as their sole quinones, and branched-chain iso fatty acids as their cell envelope components.