Pre_GI: SWBIT SVG BLASTP

Query: NC_008358:2808299 Hyphomonas neptunium ATCC 15444, complete genome

Lineage: Hyphomonas neptunium; Hyphomonas; Hyphomonadaceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: Marine member of dimorphic prosthecate bacteria. This organism is also known as Hyphomicrobium neptunium. It has a biphasic life style, which consists of a motile phase of flagellated swarmer cells, and a cessile phase in which a long prosthecate is produced at one end of the bacteria through which budding cells emerge. Newly budded cells in turn produce flagella and go through a motile phase and the cycle continues. These organisms can colonize the surfaces of marine environments which enables additional species to colonize at later stages. This organism may be of use in treatment of water as they attach to a solid surface and are capable of degradation of a number of pollutants including aromatic hydrocarbons, dimethyl sulfoxide and methyl chloride.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_012563:519037 Clostridium botulinum A2 str. Kyoto, complete genome

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated from a case of infant botulism in Kyoto, Japan in 1978. This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin.Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium. Honey is the most common vehicle for infection in infants. Food poisoning through C. botulinum is the most frequent type of infection caused by this bacterium. The wound botulism that occurs when C. botulinum infects an individual via an open wound is much rarer and is very similar to tetanus disease. There are several types of botulinum toxin known (type A through type F), all of them being neurotoxic polypeptides. The most common and widely distributed are strains and serovars of C. botulinum that produce type A toxin.