Pre_GI: SWBIT SVG BLASTP

Query: NC_008346:410940 Syntrophomonas wolfei subsp. wolfei str. Goettingen, complete

Lineage: Syntrophomonas wolfei; Syntrophomonas; Syntrophomonadaceae; Clostridiales; Firmicutes; Bacteria

General Information: Syntrophomonas wolfeisubsp. wolfei str. Goettingen (DSM 2245B) was isolated from anaerobic digestor sludge. Fatty acid-oxidizing bacterium. This organism is an anaerobic syntrophic fatty acid-oxidizing bacterium. It is the only bacterium known to produce energy from anaerobic degradation of saturated four to eight carbon fatty acids with protons serving as the electron acceptor. The cells have an unusual multilayered gram-negative cell wall. Syntrophomonas wolfei grows in coculture with Methanospirillum hungatei and can be isolated from anaerobic environments such as aquatic sediment or sewage digestor sludge.

No Graph yet!

Subject: NC_014976:2231984 Bacillus subtilis BSn5 chromosome, complete genome

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Bacillus subtilis BSn5 was isolated from Amorphophallus konjac calli tissue culture. Bacilllus subtilis BSn5 could inhibit Erwinia carotovora subsp. carotovora strain SCG1, which causes Amorphophallus soft rot disease and affects Amorphophallus industry development This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system.The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.