Pre_GI: SWBIT SVG BLASTP

Query: NC_008314:477722 Ralstonia eutropha H16 chromosome 2, complete sequence

Lineage: Cupriavidus necator; Cupriavidus; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain (ATCC 17699; H16), formerly Alcaligenes eutrophus was originally isolated from sludge. Cupriavidus necator also known as Ralstonia eutropha is a soil bacterium with diverse metabolic abilities. Strains of this organism are resistant to high levels of copper or are able to degrade chloroaromatic compounds such as halobenzoates and nitrophenols making them useful for bioremediation. Other strains have been studied for their ability to produce polyhydroxybutyrates which have industrial application. Another strain is able to attack other bacteria and fungi when nutrients in the soil are low.

No Graph yet!

Subject: NC_009138:3153576 Herminiimonas arsenicoxydans, complete genome

Lineage: Herminiimonas arsenicoxydans; Herminiimonas; Oxalobacteraceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Herminiimonas arsenicoxydans was isolated from heavy metal contaminated sludge from an industrial water treatment plant. This organism has a number of mechanisms for metabolizing arsenic allowing it to effectively colonize arsenic-contaminated environments. A bacterium capable of oxidizing and reducing arsenic. This heterotrophic bacterium is capable of reducing and oxidizing arsenic with the objective of detoxification. Arsenic is both a product from natural sources and of human activities, and is widely distributed in the environment, essentially in 3 different oxidation states: As (-III) (arsine), As (+III) (arsenite) and As (+V) (arseniate). The ecology of this metalloid is strongly dependent on microbial transformations which affect the mobility and bioavailability as well as the toxicity of arsenic in the environment.