Pre_GI: SWBIT SVG BLASTP

Query: NC_008312:4795204 Trichodesmium erythraeum IMS101, complete genome

Lineage: Trichodesmium erythraeum; Trichodesmium; ; Oscillatoriales; Cyanobacteria; Bacteria

General Information: Trichodesmium erythraeum strain IMS101 was isolated from the North Carolina coast in 1992 and grows in straight filaments. Filamentous marine cyanobacterium. This filamentous marine cyanobacterium is a nitrogen-fixing organism that contribues a significant amount of the global fixed nitrogen each year. These bacteria are unusual in that nitrogen fixation takes place in a differentiated cell called the diazocyte which is different from the nitrogen-fixing differentiated cell (heterocyst) found in other cyanobacteria. The diazocyte is developed in order to protect the oxygen-sensitive nitrogenases and includes a number of changes including production of more membranes and down-regulation of photosynthetic activity during times of peak nitrogen fixation (noontime). This organism gives the Red Sea its name when large blooms appear and is one of the organisms most often associated with large blooms in marine waters.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_014976:1174430 Bacillus subtilis BSn5 chromosome, complete genome

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Bacillus subtilis BSn5 was isolated from Amorphophallus konjac calli tissue culture. Bacilllus subtilis BSn5 could inhibit Erwinia carotovora subsp. carotovora strain SCG1, which causes Amorphophallus soft rot disease and affects Amorphophallus industry development This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system.The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.