Pre_GI: SWBIT SVG BLASTP

Query: NC_008209:695269 Roseobacter denitrificans OCh 114, complete genome

Lineage: Roseobacter denitrificans; Roseobacter; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: The aerobic phototrophic bacteria are ubiquitous as plant symbionts, free-living in lakes and ocean surface waters, soils and even near deep sea hydrothermal vents. Marine bacterium capable of aerobic anoxygenic photosynthesis. This bacterium was first isolated from a marine sediment collected on the coast of Australia. This organism's PufC photosynthetic protein has been studied as a classical tetraheme cytochrome, as it has all four possible heme-binding motifs.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_011961:528837 Thermomicrobium roseum DSM 5159 plasmid unnamed, complete sequence

Lineage: Thermomicrobium roseum; Thermomicrobium; Thermomicrobiaceae; Thermomicrobiales; Chloroflexi; Bacteria

General Information: Thermomicrobium roseum DSM 5159 was isolated from Yellowstone National Park, USA. Obligate thermophile with unusual cell wall structure. Thermomicrobium roseum is a red-pigmented, rod-shaped, Gram-negative extreme thermophile that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Analyses of environmental sequences from hot spring environments show that T.roseum displays a low quantity but ubiquitous presence in top layers of microbial mats. Few standard housekeeping genes are found on the megaplasmid, however, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, is is propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Because T. roseum is a deep-branching member of this phylum, eventhough this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi.