Pre_GI: SWBIT SVG BLASTP

Query: NC_008043:167108 Silicibacter sp. TM1040 mega plasmid, complete sequence

Lineage: Ruegeria; Ruegeria; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: This strain was isolated from a culture of the dinoflagellate Pfiesteria piscicida CCMP1830 which has been implicated in many large scale algal blooms resulting in increased mortality in fish. The bacteria are attached to the surface of the dinoflagellate and in some ways allow the dinoflagellate to grow as those lacking the bacteria die off. The bacterium also chemotaxes towards the dinoflagellate product DMSP (dimethylsulfoniopropionate) and metabolizes it. DMSP is a major source of sulfur in marine ecosystems and plays a role in the sulfur biogeochemical cycle. The implication is a tight association between these important dinoflagellates and this marine bacterium.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_000917:1778173 Archaeoglobus fulgidus DSM 4304, complete genome

Lineage: Archaeoglobus fulgidus; Archaeoglobus; Archaeoglobaceae; Archaeoglobales; Euryarchaeota; Archaea

General Information: This is the type strain (DSM 4304) of the Archaeoglobales, and was isolated from a geothermally heated sea floor at Vulcano Island, Italy. Doubling time is four hours under optimal conditions. The organism is an autotrophic or organotrophic sulfate/sulfite respirer. An additional distinguishing characteristic is blue-green fluorescence at 420 nm. This bacterium is the first sulfur-metabolizing organism to have its genome sequence determined. Growth by sulfate reduction is restricted to relatively few groups of prokaryotes; all but one of these are Eubacteria, the exception being the archaeal sulfate reducers in the Archaeoglobales. These organisms are unique in that they are only distantly related to other bacterial sulfate reducers, and because they can grow at extremely high temperatures. The known Archaeoglobales are strict anaerobes, most of which are hyperthermophilic marine sulfate reducers found in hydrothermal environments. High-temperature sulfate reduction by Archaeoglobus species contributes to deep subsurface oil-well 'souring' by iron sulfide, which causes corrosion of iron and steel in oil-and gas-processing systems.