Pre_GI: SWBIT SVG BLASTP

Query: NC_007964:717590 Nitrobacter hamburgensis X14, complete genome

Lineage: Nitrobacter hamburgensis; Nitrobacter; Bradyrhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Nitrobacter hamburgensis X14 was isolated from soil. Nitrite-oxidizing soil bacterium. Members of this genus are found in marine, freshwater, and terrestrial habitats, often in association with ammonia-oxidizing bacteria. These organisms oxidize nitrite, generated by the oxidation of ammonia, to nitrate and play an important role in the global nitrogen cycle. The enzyme involved in nitrite oxidation, nitrite oxidoreductase, can also reduce nitrate to nitrite in the absence of oxygen, allowing Nitrobacter sp. to grow anaerobically. Nitrobacter hamburgensis is commonly isolated from freshwater, soil, and sewage sludge. This organism has been used in biofilms to remove nitrogen from wastewater.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_001263:2236777 Deinococcus radiodurans R1 chromosome 1, complete sequence

Lineage: Deinococcus radiodurans; Deinococcus; Deinococcaceae; Deinococcales; Deinococcus-Thermus; Bacteria

General Information: This red-pigmented organism's name means "strange berry that withstands radiation", marking the fact that this organism is one of the most radiation-resistant known. It can tolerate radiation levels at 1000 times the levels that would kill a human and it was originally isolated in 1956 from a can of meat that had been irradiated with X-rays. The resistance to radiation may reflect its resistance to dessication, which also causes DNA damage. This organism may be of use in cleaning up toxic metals found at nuclear weapons production sites due to the radiation resistance. This bacterium is also a highly efficient transformer, and can readily take up exogenous DNA from the environment, which may also aid DNA repair. This organism carries multiple copies of many DNA repair genes, suggesting a robust system for dealing with DNA damage. The recombination system may rely on multiple copies of various repeat elements found throughout the genome.