Pre_GI: SWBIT SVG BLASTP

Query: NC_007948:3541987 Polaromonas sp. JS666, complete genome

Lineage: Polaromonas; Polaromonas; Comamonadaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain was isolated from sediment contaminated with cis-dichloroethane (cDCE), a common pollutant resulting from widespread manufacture and use of industrial solvents. This bacterium is the only known organism capable of using cDCE as a sole carbon and energy source. The ability of this strain to convert ethene to epoxyethane suggests that the first step in the cDCE biodegradation pathway is the oxidation of cDCE to an epoxide compound. Bacteria that are able to grow on cDCE are rare, and have only been found in very few highly selective artificial environments. The discovery of this bacteria may provide a low cost, self-sustaining bioremediation method in areas where cDCE is a problem contaminant.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007604:168176 Synechococcus elongatus PCC 7942, complete genome

Lineage: Synechococcus elongatus; Synechococcus; Synechococcaceae; Chroococcales; Cyanobacteria; Bacteria

General Information: This strain is a freshwater organism and is extensively studied due to its circadian clock which controls the expression of upwards of 800 genes during a 24 hour period. These unicellular cyanobacteria are also known as blue green algae and along with Prochlorococcus are responsible for a large part of the carbon fixation that occurs in marine environments. Synechococcus have a broader distribution in the ocean and are less abundant in oligotrophic (low nutrient) regions. These organism utilize photosystem I and II to capture light energy. They are highly adapted to marine environments and some strains have evolved unique motility systems in order to propel themselves towards areas that contain nitrogenous compounds. An obligate photoautotroph, it has been studied extensively by an international research community with respect to acquisition of organic carbon, transport and regulation of nitrogen compounds, adaptation to nutrient stresses, and reponse to light intensity.