Pre_GI: SWBIT SVG BLASTP

Query: NC_007907:456164 Desulfitobacterium hafniense Y51, complete genome

Lineage: Desulfitobacterium hafniense; Desulfitobacterium; Peptococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated from soil contaminated with tetrachloroethene (PCE) in Japan. It can efficiently dehalogenate PCEs via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-1,2-DCE). It can also dehalogenase tetra-, penta-, and hexachloroethanes. Hydrocarbon dehalogenator. This organism can dehalogenate a variety of hydrocarbons and can utilize fumarate, sulfite, and thiosulfate (but not thiousulfate) as terminal electron acceptors. Some important pollutants such as polychlorinated biphenyls (PCBs) may be degraded by this organism.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008278:5053899 Frankia alni ACN14a, complete genome

Lineage: Frankia alni; Frankia; Frankiaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain was isolated from a green alder (Alnus crispa) growing in Tadoussac, Canada. These bacteria were originally linked to fungi, because of the mycelium-like filaments many of them form. This bacterium is able to establish a nitrogen-fixing symbiosis with alder (Alnus spp.) and myrtle (Myrica spp.), two pioneer plant genera of temperate regions, found on forest clearings, mine wastes, sand dunes and glacial moraines where nitrogen is the limiting factor. Frankia alni causes root hair deformation: it penetrates the cortical cells and induces the formation of nodules which resemble those induced by Rhizobium in legumes. These nodules are then colonized by vegetative hyphae (mycelium filaments) which differentiate into diazo-vesicles