Pre_GI: SWBIT SVG BLASTP

Query: NC_007907:1732500 Desulfitobacterium hafniense Y51, complete genome

Lineage: Desulfitobacterium hafniense; Desulfitobacterium; Peptococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated from soil contaminated with tetrachloroethene (PCE) in Japan. It can efficiently dehalogenate PCEs via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-1,2-DCE). It can also dehalogenase tetra-, penta-, and hexachloroethanes. Hydrocarbon dehalogenator. This organism can dehalogenate a variety of hydrocarbons and can utilize fumarate, sulfite, and thiosulfate (but not thiousulfate) as terminal electron acceptors. Some important pollutants such as polychlorinated biphenyls (PCBs) may be degraded by this organism.

No Graph yet!

Subject: NC_014014:153837 Mycoplasma crocodyli MP145 chromosome, complete genome

Lineage: Mycoplasma crocodyli; Mycoplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria

General Information: Mycoplasma crocodyli was isolated from the joint of a crocodile with exudative polyarthritis. The siblingspecies of M. crocodyli, Mycoplasma alligatoris causes acute lethalprimary infection of susceptible hosts, notably American alligators.This pathogen is studied to understand the mechanisms and evolutionaryorigins of that virulence. A genome survey indicated that M. alligatorisuses sialidase (Nanl) and hyaluronidase (NagH) to generate fuel forglycolysis from host cell glycans. M. crocodyli, which does not causedisease in American alligators, possesses NagH but not Nanl, so damageto the host's extracellular matrix alone cannot explain the particularvirulence of M. alligatoris.