Pre_GI: SWBIT SVG BLASTP

Query: NC_007794:262402 Novosphingobium aromaticivorans DSM 12444, complete genome

Lineage: Novosphingobium aromaticivorans; Novosphingobium; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: This strain, also known as F199, was isolated from a sample obtained at a depth of 410 m from a borehole sample that was drilled at the Savannah River Site in South Carolina, USA. Aromatic hydrocarbon-degrading bacterium. This organism is unusual in that it has glycosphingolipid in the cell envelope instead of the lipopolysaccharide found in most other gram negative organisms. It is typically isolated from a wide range of environmental sites.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008463:1293079 Pseudomonas aeruginosa UCBPP-PA14, complete genome

Lineage: Pseudomonas aeruginosa; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain is a human clinical isolate from a human burn patient. It is infectious in mice, Caenorhabditis elegans, Drosophila melanogaster, and Arabidopsis thaliana. Opportunistic pathogen. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is an opportunistic human pathogen. While it rarely infects healthy individuals, immunocompromised patients, like burn victims, AIDS-, cancer- or cystic fibrosis-patients are at increased risk for infection with this environmentally versatile bacteria. It is an important soil bacterium with a complex metabolism capable of degrading polycyclic aromatic hydrocarbons, and producing interesting, biologically active secondary metabolites including quinolones, rhamnolipids, lectins, hydrogen cyanide, and phenazines. Production of these products is likely controlled by complex regulatory networks making Pseudomonas aeruginosa adaptable both to free-living and pathogenic lifestyles. The bacterium is naturally resistant to many antibiotics and disinfectants, which makes it a difficult pathogen to treat.