Pre_GI: SWBIT SVG BLASTP

Query: NC_007760:1806136 Anaeromyxobacter dehalogenans 2CP-C, complete genome

Lineage: Anaeromyxobacter dehalogenans; Anaeromyxobacter; Myxococcaceae; Myxococcales; Proteobacteria; Bacteria

General Information: This strain differs from other isolates based on the combination of its ability to use 2,5-dichlorophenol and its inability to use nitrate as a strong electron acceptor. It can also dechlorinate 2,4-dichlorophenol and 2,4,6-trichlorophenol much faster than other isolates. Can dehalogenate chlorinated phenols. This anaerobic species was originally isolated by enrichment and isolation of single plate-grown colonies, and was the first pure culture of myxobacteria able to grow anaerobically.

No Graph yet!

Subject: NC_013418:459650 Blattabacterium sp. (Periplaneta americana) str. BPLAN, complete

Lineage: Blattabacterium; Blattabacterium; Blattabacteriaceae; Flavobacteriales; Bacteroidetes; Bacteria

General Information: This organism is the endosymbiont of the American cockroach, Periplaneta americana. It is a Gram-negative maternally inherited bacteria which lives in specialized cells in the host's abdominal fat body. Phylogenetic analyses for the Blattabacterium-cockroach symbiosis supports the hypothesis of co-evolution between symbionts and hosts dating back to more than 140 million years ago. Cockroaches are omnivorous insects, often subsisting on a nitrogen-poor diet, and Blattabacterium have been hypothesized to participate in uric acid degradation, nitrogen assimilation, and nutrient provisioning. Genome sequencing and metabolic reconstruction shows that Blattabacterium can recycle nitrogen from urea and ammonia, which are uric acid degradation products, into glutamate, using urease and glutamate dehydrogenase, and thus would be able to provide its host with some essential amino acids, vitamins and cofactors. The bacterium relies on asparagine and glutamine supplied by the host; it may be able to make proline from arginine via the urea cycle.