Pre_GI: SWBIT SVG BLASTP

Query: NC_007651:3560652 Burkholderia thailandensis E264 chromosome I, complete sequence

Lineage: Burkholderia thailandensis; Burkholderia; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This organism was originally isolated from a rice field sample in Thailand. Burkholderia thailandensis is a common soil saprophyte (lives on decaying organic matter in the soil). This bacterium is very similar to the human and animal pathogen Burkholderia pseudomallei but appears to be avirulent. Distinguishing the two organisms is very difficult and may depend on using monoclonal antibodies to detect differences in exopolysaccharide production.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007347:2421942 Ralstonia eutropha JMP134 chromosome 1, complete sequence

Lineage: Cupriavidus pinatubonensis; Cupriavidus; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This organism is found in both soil and water and has great potential for use in bioremediation as it is capable of degrading a large list of pollutants including chlorinated aromatic compounds. The bacterium can utilize hydrogen, carbon dioxide, as well as organic compounds for growth and is a model organism for hydrogen oxidation as it can grow on hydrogen as the sole energy source. It was originally isolated due to its ability to degrade the herbicide 2,4-dichlorophenoxyacetic acid, which is due to the degradative functions being encoded on a plasmid (pJP4). Metabolically versatile bacterium. Cupriavidus necator also known as Ralstonia eutropha is a soil bacterium with diverse metabolic abilities. Strains of this organism are resistant to high levels of copper or are able to degrade chloroaromatic compounds such as halobenzoates and nitrophenols making them useful for bioremediation.