Pre_GI: SWBIT SVG BLASTP

Query: NC_007644:1352794 Moorella thermoacetica ATCC 39073, complete genome

Lineage: Moorella thermoacetica; Moorella; Thermoanaerobacteraceae; Thermoanaerobacterales; Firmicutes; Bacteria

General Information: Moorella thermoacetica, formerly Clostridium thermoaceticum, can grow on hydrogen and fix carbon dioxide or carbon monoxide with the production of acetate. It is found at the bottom of stagnant ponds and forms extremely heat-resistant spores.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006510:310212 Geobacillus kaustophilus HTA426, complete genome

Lineage: Geobacillus kaustophilus; Geobacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Geobacillus kaustophilus strain HTA426 was first isolated from deep sea sediment of the Mariana Trench in the Pacific Ocean and belongs to a closely related group of thermophilic Bacillus spp. Members of this genus were originally classified as Bacillus. Recent rDNA analysis and DNA-DNA hybridization studies using spore-forming thermophilic subsurface isolates provided enough evidence to define the phylogenetically distinct, physiologically and morphologically consistent taxon Geobacillus. Geobacillus species are chemo-organotrophic, obligately thermophilic, motile, spore-forming, aerobic or facultatively anaerobic. This organism was compared with mesophilic Bacillus spp. to identify genome characteristics and specific genes related to thermophilia. Analysis of the amino acid compositions showed clear differences between Geobacillus kaustophilus and the mesophilic bacilli. In addition, the higher G+C content in Geobacillus kaustophilus rRNA also appears correlated to thermophilia. In addition, tRNA modification by the Geobacillus kaustophilus specific tRNA methyltransferases probably aids in the thermoadaptation of this organism.