Pre_GI: SWBIT SVG BLASTP

Query: NC_007643:185135 Rhodospirillum rubrum ATCC 11170, complete genome

Lineage: Rhodospirillum rubrum; Rhodospirillum; Rhodospirillaceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: This bacterium can grow using carbon monoxide as the sole carbon and energy source and the cells contain a well characterized nitrogenase system that is post-translationally modified by ADP-ribosylation. Phototrophic bacterium. This organism is an anoxygenic phototrophic bacterium that does not produce oxygen, but instead produces extracellular elemental sulfur when harvesting light energy. The bacterium lacks the light harvesting complex 2 (LHC2) normally found in photosynthetic bacteria meaning it contains one of the simplest photosynthetic systems studied.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_000917:1778173 Archaeoglobus fulgidus DSM 4304, complete genome

Lineage: Archaeoglobus fulgidus; Archaeoglobus; Archaeoglobaceae; Archaeoglobales; Euryarchaeota; Archaea

General Information: This is the type strain (DSM 4304) of the Archaeoglobales, and was isolated from a geothermally heated sea floor at Vulcano Island, Italy. Doubling time is four hours under optimal conditions. The organism is an autotrophic or organotrophic sulfate/sulfite respirer. An additional distinguishing characteristic is blue-green fluorescence at 420 nm. This bacterium is the first sulfur-metabolizing organism to have its genome sequence determined. Growth by sulfate reduction is restricted to relatively few groups of prokaryotes; all but one of these are Eubacteria, the exception being the archaeal sulfate reducers in the Archaeoglobales. These organisms are unique in that they are only distantly related to other bacterial sulfate reducers, and because they can grow at extremely high temperatures. The known Archaeoglobales are strict anaerobes, most of which are hyperthermophilic marine sulfate reducers found in hydrothermal environments. High-temperature sulfate reduction by Archaeoglobus species contributes to deep subsurface oil-well 'souring' by iron sulfide, which causes corrosion of iron and steel in oil-and gas-processing systems.