Pre_GI: SWBIT SVG BLASTP

Query: NC_007622:2239799 Staphylococcus aureus RF122, complete genome

Lineage: Staphylococcus aureus; Staphylococcus; Staphylococcaceae; Bacillales; Firmicutes; Bacteria

General Information: This strain is a common strain associated with mastitis in cattle. This organism is responsible for several hundred million dollars worth of annual economic loss to animal production each year. Staphylcocci are generally found inhabiting the skin and mucous membranes of mammals and birds. Some members of this genus can be found as human commensals and these are generally believed to have the greatest pathogenic potential in opportunistic infections. This organism is a major cause of nosocomial (hospital-acquired) and community-acquired infections. S. aureus continues to be a major cause of mortality and is responsible for a variety of infections including, boils, furuncles, styes, impetigo and other superficial skin infections in humans. Also known to cause more serious infections particularly in the chronically ill or immunocompromised. The ability to cause invasive disease is associated with persistance in the nasal cavity of a host.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_020134:2801199 Clostridium stercorarium subsp. stercorarium DSM 8532, complete

Lineage: Clostridium stercorarium; Clostridium; unclassified Ruminococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: Lignocellulosic biomass has great potential as an abundant and renewable source of fermentable sugars through enzymic saccharification. Clostridium stercorarium is a catabolically versatile bacterium producing a wide range of hydrolases for degradation of biomass. Together with Clostridium thermocellum, Clostridium aldrichii and other cellulose degraders, it forms group I of the clostridia. It is moderately thermophilic, with an optimum growth temperature of 65 degrees C, and has repeatedly been isolated from self-heated compost. The two-component cellulase system of C. stercorarium has been investigated thoroughly. Due to its ability to utilize the various polysaccharides present in biomass it is especially suited for the fermentation of hemicellulose to organic solvents. Some isolates have been used in Japan in a single-step ethanol-fermenting pilot-process with lignocellulosic biomass as substrate.