Pre_GI: SWBIT SVG BLASTP

Query: NC_007613:864084 Shigella boydii Sb227, complete genome

Lineage: Shigella boydii; Shigella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is an isolate from an epidemic that took place in China in the 1950s. Causes dysentery. This genus is named for the Japanese scientist (Shiga) who first discovered these organisms in the 1890s. They are closely related to the Escherichia group, and may be considered the same species. These organisms are human-specific pathogens that are transmitted via contaminated food and water and are the leading causes of endemic bacillary dysentery, causing over 160 million cases of infection and 1 million deaths yearly worldwide. The bacteria infect the epithelial lining of the colon, causing acute inflammation by entering the host cell cytoplasm and spreading intercellularly. are extremely virulent organisms that can cause an active infection after a very low exposure. Both the type III secretion system, which delivers effector molecules into the host cell, and some of the translocated effectors such as the invasion plasmid antigens (Ipas), are encoded on the plasmid. The bacterium produces a surface protein that localizes to one pole of the cell (IcsA) which binds to and promotes actin polymerization, resulting in movement of the bacterium through the cell cytoplasm, and eventually to neighboring cells, which results in inflammatory destruction of the mucosal lining. Shigella boydii is uncommon except in India, where it was first isolated. Progression to clinical dysentery occurs in most patients infected with this organism.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_015224:1763848 Yersinia enterocolitica subsp. palearctica 105.5R(r) chromosome,

Lineage: Yersinia enterocolitica; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. This species is a food and waterborn pathogen that causes gastroenteritis (inflammation of the mucous membranes of the stomach and intestine) and is able to proliferate at temperatures as low as 4 degrees C.