Pre_GI: SWBIT SVG BLASTP

Query: NC_007517:1792000 Geobacter metallireducens GS-15, complete genome

Lineage: Geobacter metallireducens; Geobacter; Geobacteraceae; Desulfuromonadales; Proteobacteria; Bacteria

General Information: First isolated from the Potomac river downstream of Washington, DC, USA in 1987. This organism actively moves towards metal attractants such as iron and manganese oxides, which are insoluble, and produces type IV pili for attachment to the insoluble substrates. Common metal-reducing bacterium. This organism, similar to what is observed in Geobacteria sulfurreducens, couples the oxidation of organic molecules to the reduction of iron by using insoluble Fe (III) as an electron acceptor under anaerobic conditions. This bacterium plays an imporant part of the nutrient cycling in aquatic environments. The cell can also use uranium and plutonium, therefore, this organism and may be important for the bioremediation of contaminated waste sites.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_014836:1180454 Desulfurispirillum indicum S5 chromosome, complete genome

Lineage: Desulfurispirillum indicum; Desulfurispirillum; Chrysiogenaceae; Chrysiogenales; Chrysiogenetes; Bacteria

General Information: Environment: Fresh water; Temp: Mesophile. This is the first cultured species of the proposed new genus "Desulfurispirillum", and the sequencing of its genome will expand the range of experimental approaches that researchers can use to characterize its metabolic pathways for energy production and understand how these pathways are regulated. This organism is notable for its ability to reduce selenate to selenite and further to insoluble elemental selenium, in a process called dissimilatory selenate reduction.