Pre_GI: SWBIT SVG BLASTP

Query: NC_007517:3430237 Geobacter metallireducens GS-15, complete genome

Lineage: Geobacter metallireducens; Geobacter; Geobacteraceae; Desulfuromonadales; Proteobacteria; Bacteria

General Information: First isolated from the Potomac river downstream of Washington, DC, USA in 1987. This organism actively moves towards metal attractants such as iron and manganese oxides, which are insoluble, and produces type IV pili for attachment to the insoluble substrates. Common metal-reducing bacterium. This organism, similar to what is observed in Geobacteria sulfurreducens, couples the oxidation of organic molecules to the reduction of iron by using insoluble Fe (III) as an electron acceptor under anaerobic conditions. This bacterium plays an imporant part of the nutrient cycling in aquatic environments. The cell can also use uranium and plutonium, therefore, this organism and may be important for the bioremediation of contaminated waste sites.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008786:1936626 Verminephrobacter eiseniae EF01-2, complete genome

Lineage: Verminephrobacter eiseniae; Verminephrobacter; Comamonadaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This species was isolated from the kidney of the earthworm Eisenia foetida. Evidence based on curing experiments, Acidovorax-specific probes, and 16S phylogeny, indicate that earthworm egg capsules contain high numbers of the bacterial endosymbiont. Juvenile earthworms are colonized during embryonic development within the egg capsule, and failing this are not likely to acquire the symbiont by association with colonized adults or their bedding.