Pre_GI: SWBIT SVG BLASTP

Query: NC_007426:205390 Natronomonas pharaonis DSM 2160, complete genome

Lineage: Natronomonas pharaonis; Natronomonas; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: Isolated from Lake Gabara in Egypt. Extreme haloalkaliphilic archeon. Natronomonas pharaonis is able to survive at high salt and pH conditions which results in limited nitrogen availability through ammonium. In order to compensate for this, Natronomonas pharaonis has developed three systems to promote nitrogen assimilation: direct uptake of ammonia, uptake of nitrate, and uptake of urea. Another problem with high pH environments is the use of a proton gradient for the generation of ATP, which other alkaliphiles have adapted to by substitution of sodium ions for protons. However, this organism utilizes protons for ATP generation as determined by experimental data.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_015259:485015 Polymorphum gilvum SL003B-26A1 chromosome, complete genome

Lineage: Polymorphum gilvum; Polymorphum; ; ; Proteobacteria; Bacteria

General Information: Polymorphum gilvum SL003B-26A1 is a type strain of a newly published novel species in the novel genus Polymorphum. It was isolated from a crude oil-polluted saline soil in Shengli Oilfield, China and could use the crude oil as the sole carbon source. Oil pollution has become a global issue because of its severe ecological impact and destruction. Bioremediation is proved to be an effective process to restore the oil polluted environments. The complete genome sequence of Polymorphum gilvum SL003B-26A1 provides new strategies for bioremediation of oil contaminated environment.