Pre_GI: SWBIT SVG BLASTP

Query: NC_007413:1570000 Anabaena variabilis ATCC 29413, complete genome

Lineage: Anabaena variabilis; Anabaena; Nostocaceae; Nostocales; Cyanobacteria; Bacteria

General Information: These cyanobacteria are bluegreen algae that are capable of fixing carbon and nitrogen. They form long filaments and can be found worldwide in various aquatic environments as well as some terrestrial ones. These bacteria can form a variety of differentiated cell types, including spore-like cells (akinetes), small motile filaments (hormongia) and most importantly, heterocysts that are nitrogen-producing cells. The heterocyst produces multiple layers outside of its cell wall, shuts down photosystem II in order to inhibit oxygenic photosynthesis and ramps up metabolism in order to use up the oxygen present. Heterocysts donate fixed nitrogen compounds as amino acids to neighboring cells and in return receive a photosynthetically produced carbon source such as sucrose. These organisms produce toxic blooms in aquatic environments that are harmful or fatal to animals and humans due to the various cyanotoxins they produce. Anabaena variabilis is a filamentous heterocyst-forming cyanobacterium that fixes nitrogen and CO2 using the energy of sunlight via oxygen-evolving plant-type photosynthesis. In addition, this organism has been studied extensively for the production of hydrogen using solar energy.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_009664:1569335 Kineococcus radiotolerans SRS30216, complete genome

Lineage: Kineococcus radiotolerans; Kineococcus; Kineosporiaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This organism is a coccoid bacterium originally isolated from a high-level radioactive waste cell at the Savannah River Site in Aiken, South Carolina, USA, in 2002. Radiation-resistant bacterium. Similarly to Deinococcus radiodurans, K. radiotolerans exhibits a high degree of resistance to ionizing gamma-radiation. Cells are also highly resistant to dessication. Kineococcus-like 16S rRNA gene sequences have been reported from the Mojave desert and other arid environments where these bacteria seem to be ubiquitous. Because of its high resistance to ionizing radiation and desiccation, K. radiotolerans has potential use in applications involving in situ biodegradation of problematic organic contaminants from highly radioactive environments. Moreover, comparative functional genomic characterization of this species and other known radiotolerant bacteria such as Deinococcus radiodurans and Rubrobacter xylanophilus will shed light onto the strategies these bacteria use for survival in high radiation environments, as well as the evolutionary origins of radioresistance and their highly efficient DNA repair machinery. This organism produces an orange carotenoid-like pigment. Cell growth occurs between 11-41 degresss C, pH 5-9, and in the presence of <5% NaCl and <20% glucose. Carbohydrates and alcohols are primary growth substrates.