Pre_GI: SWBIT SVG BLASTP

Query: NC_007333:2674596 Thermobifida fusca YX, complete genome

Lineage: Thermobifida fusca; Thermobifida; Nocardiopsaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Produces thermostable enzymes. Members of this genus are distinguished from most actinomycetes by their ability to form clustered spores that attach directly to the substrate mycelia, and not to the aerial mycelia. Moreover, these bacteria do not produce aerial mycelia at all. M. fusca is the most thermophilic, with some growth detectable at up to 75 degrees C. The natural habitat of Thermobifida is self-heated organic materials, like rotting hay, compost, manure or urban waste piles, etc., which they share with other thermophilic and thermotolerant actinomycetes. Biological and physiological features of these bacteria are accordingly adapted to the conditions of such environments, namely the high temperatures and the presence of abundant plant materials and other bio-polymer substrates of natural origin. Actinomycetes are well suited for this environment because they generally grow as branching hyphae and are well adapted to penetration and degradation of insoluble substrates such as lignocellulose. Spores of Thermobifida are known to cause allergic respiratory diseases called mushroom worker disease and farmer's lung, which develop in agricultural workers who by the nature of their work happen to breathe in significant amounts of actinomycete spores from hay, compost, etc. Some isolates of this organism are able to mineralize plastic disposals and other anthropogenic xenobiotics. Thermobifidaare of particular interest because they produce multiple thermostable enzymes involved in the degradation of lignocellulose.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_009664:1434974 Kineococcus radiotolerans SRS30216, complete genome

Lineage: Kineococcus radiotolerans; Kineococcus; Kineosporiaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This organism is a coccoid bacterium originally isolated from a high-level radioactive waste cell at the Savannah River Site in Aiken, South Carolina, USA, in 2002. Radiation-resistant bacterium. Similarly to Deinococcus radiodurans, K. radiotolerans exhibits a high degree of resistance to ionizing gamma-radiation. Cells are also highly resistant to dessication. Kineococcus-like 16S rRNA gene sequences have been reported from the Mojave desert and other arid environments where these bacteria seem to be ubiquitous. Because of its high resistance to ionizing radiation and desiccation, K. radiotolerans has potential use in applications involving in situ biodegradation of problematic organic contaminants from highly radioactive environments. Moreover, comparative functional genomic characterization of this species and other known radiotolerant bacteria such as Deinococcus radiodurans and Rubrobacter xylanophilus will shed light onto the strategies these bacteria use for survival in high radiation environments, as well as the evolutionary origins of radioresistance and their highly efficient DNA repair machinery. This organism produces an orange carotenoid-like pigment. Cell growth occurs between 11-41 degresss C, pH 5-9, and in the presence of <5% NaCl and <20% glucose. Carbohydrates and alcohols are primary growth substrates.