Pre_GI: SWBIT SVG BLASTP

Query: NC_007298:1334876 Dechloromonas aromatica RCB, complete genome

Lineage: Dechloromonas aromatica; Dechloromonas; Rhodocyclaceae; Rhodocyclales; Proteobacteria; Bacteria

General Information: This strain was enriched as a hydrocarbon-oxidizing chlorate-reducer from the Potomac River, Maryland, USA. This organism is the first one to have the capability of benzene oxidation in pure anaerobic culture by coupling it to nitrate reduction which is of importance due to the anaerobic environments often found in bioremediation projects. It can reduce perchlorate and chlorate to chloride. This organism may be used for bioremediation as it can oxidize aromatic hydrocarbon compounds, including benzene, in the absence of oxygen. Benzene is an important pollutant, and is used in many manufacturing processes and is a component of diesel fuel.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_003305:1743939 Agrobacterium tumefaciens str. C58 chromosome linear, complete

Lineage: Agrobacterium tumefaciens; Agrobacterium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Gram-negative soil bacterium. This is the most widely studied species in the genus. Strains of Agrobacterium are classified in three biovars based on their utilisation of different carbohydrates and other biochemical tests. The differences between biovars are determined by genes on the single circle of chromosomal DNA. Biovar differences are not particularly relevant to the pathogenicity of A. tumefaciens, except in one respect: biovar 3 is found worldwide as the pathogen of gravevines. This species causes crown gall disease of a wide range of dicotyledonous (broad-leaved) plants, especially members of the rose family such as apple, pear, peach, cherry, almond, raspberry and roses. Because of the way that it infects other organisms, this bacterium has been used as a tool in plant breeding. Any desired genes, such as insecticidal toxin genes or herbicide-resistance genes, can be engineered into the bacterial DNA, and then inserted into the plant genome. This process shortens the conventional plant breeding process, and allows entirely new (non-plant) genes to be engineered into crops.