Pre_GI: SWBIT SVG BLASTP

Query: NC_006958:1819944 Corynebacterium glutamicum ATCC 13032, complete genome

Lineage: Corynebacterium glutamicum; Corynebacterium; Corynebacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Causes bovine brucellosis. They may be found as members of the normal microflora of humans, where these bacteria find a suitable niche in virtually every anatomic site. This organism is a well-studied soil bacterium of considerable importance in biotechnology, in particular for the fermentative production of L-amino acids for food and fodder industry. The name was originaly given for this species for its ability to produce significant quantities (>100 g per liter) of glutamic acid (glutamate), an important food enhancer that has a meaty taste and flavor. Currently used commercially to produce glutamate and other amino acids (L-lysine) and compounds. The first strain of the species was isolated in 1957 by S. Kinoshita and colleagues while searching for an efficient glutamate-producer.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008146:1748026 Mycobacterium sp. MCS, complete genome

Lineage: Mycobacterium; Mycobacterium; Mycobacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Mycobacterium MCS was isolated from soil in a wood preservative-contaminated land-treatment unit where remediation of polycyclic aromatic hydrocarbon (PAH) was occurring. This isolate mineralizes small- and large-ring PAHs, in contrast to other PAH-degrading microbes. Bioremediation of PAHs offers an attractive solution to pollution clean-up because it can occur on site and at relative little cost compared to alternatives. This isolate belongs to a fast-growing group of the mycobacterium genus that is defined as Gram-positive, acid-fast, pleomorphic, non-motile rods. Bioremediation of soils contaminated with wood preservatives containing polycyclic aromatic hydrocarbons (PAHs) is desired because of their toxic, mutagenic, and carcinogenic properties. Creosote wood preservative–contaminated soils at the Champion International Superfund Site in Libby, Montana currently undergo bioremediation in a prepared-bed land treatment unit (LTU) process.