Pre_GI: SWBIT SVG BLASTP

Query: NC_006932:1596732 Brucella abortus biovar 1 str. 9-941 chromosome I, complete

Lineage: Brucella abortus; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Causes bovine brucellosis. They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This organism was first noticed on the island of Malta. It is the primary cause of bovine brucellosis, which results in enormous (billions of dollars) economic losses due primarily to reproductive failure and food losses. In man, it causes undulant fever, a long debilitating disease that is treated by protracted administration of antibiotics.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006624:2016000 Thermococcus kodakarensis KOD1, complete genome

Lineage: Thermococcus kodakarensis; Thermococcus; Thermococcaceae; Thermococcales; Euryarchaeota; Archaea

General Information: This organism was originally identified as Pyrococcus sp. strain KOD1. It was isolated from a solfatara on Kodakara Island, Japan. Hyperthermophilic archeon. This genus is a member of the order Thermococcales in the Euryarchaeota. Thermococcus sp. are the most commonly isolated hyperthermophilic organisms and are often isolated from marine hydrothermal vents and terrestrial hot sulfur springs. Elemental sulfur is either required for, or stimulates, growth. These obligate heterotrophs can ferment a variety of organic compounds, including peptides, amino acids, and sugars in the absence of sulfur. Thermococcus kodakaraensis is a hyperthermophilic archeon. Proteins from this organism have been extensively studied to find thermostable enzymes for industrial and biotechnological applications.