Pre_GI: SWBIT SVG BLASTP

Query: NC_006908:291539 Mycoplasma mobile 163K, complete genome

Lineage: Mycoplasma mobile; Mycoplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria

General Information: Mycoplasma mobile Strain 163K (ATCC 43663) is the only known strain of the species. It is not pathogenic for humans or animals. However, this organism was originally isolated (1984) from the gills of a fresh-water fish, the tench. It is the first mycoplasmal isolate that colonizes an aquatic organism. The unusual habitat explains lower temperature growth optimum of 20 degrees Celsius. M. mobile can glide at speeds of up to 7 microns/sec, much faster that any other known gliding mycoplasmas. This genus currently comprises more than 120 obligate parasitic species found in a wide spectrum of hosts, including humans, animals, insects and plants. The primary habitats of human and animal mycoplasmas are mucous membranes of the respiratory and urogenital tracts, eyes, mammary glands and the joints. Infection that proceeds through attachment of the bacteria to the host cell via specialized surface proteins, adhesins, and subsequent invasion, results in prolonged intracellular persistence that may cause lethality. Once detected in association with their eukaryotic host tissue, most mycoplasmas can be cultivated in the absence of a host if their extremely fastidious growth requirements are met.

No Graph yet!

Subject: NC_010337:2339056 Heliobacterium modesticaldum Ice1, complete genome

Lineage: Heliobacterium modesticaldum; Heliobacterium; Heliobacteriaceae; Clostridiales; Firmicutes; Bacteria

General Information: Heliobacterium modesticaldum strain Ice1, the type strain of this species, was isolated from Icelandic hot spring volcanic soils. It grows optimally above 50 degrees Celsius, grows best photoheterotrophically, but can grow in the dark chemotrophically on pyruvate. Phototrophic thermophile. This organism is an anoxygenic phototroph isolated from hot spring microbial mats and volcanic soil. Cell wall structure, the ability to form endospores, and 16S ribosomal RNA analysis place Heliobacterium modesticaldum in a family of phototrophic bacteria related to the Clostridia. Heliobacterium modesticaldum is able to fix nitrogen and may contribute significantly to the nitrogen availability in microbial mats.