Pre_GI: SWBIT SVG BLASTP

Query: NC_006677:1596560 Gluconobacter oxydans 621H, complete genome

Lineage: Gluconobacter oxydans; Gluconobacter; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Industrially useful bacterium. Gluconobacter oxydans is a member of the Acetobacteraceae family within the alpha proteobacteria and can be isolated from flowers, fruits, and fermented beverages. This organism uses membrane-associated dehydrogenases to incompletely oxidize a wide variety of carbohydrates and alcohols. Oxidation occurs in the periplasm with the products being released into the medium via outer membrane porins and the electrons entering the electron transport chain. Able to oxidize large amounts of substrates, making it useful for industrial purposes. Among other applications, it has been used to produce 2-ketogluconic for iso-ascorbic acid production, 5-ketogluconic acid from glucose for tartaric acid production, and L-sorbose from sorbitol for vitamin C synthesis.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006905:2805877 Salmonella enterica subsp. enterica serovar Choleraesuis str

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated from a 58-year old man with sepsis and has been shown to be resistant to ciprofloxacin and ceftriaxone. This organism also causes severe disease (swine paratyphoid) in pigs. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.