Pre_GI: SWBIT SVG BLASTP

Query: NC_006576:1435422 Synechococcus elongatus PCC 6301, complete genome

Lineage: Synechococcus elongatus; Synechococcus; Synechococcaceae; Chroococcales; Cyanobacteria; Bacteria

General Information: Freshwater organism. These unicellular cyanobacteria are also known as blue green algae and along with Prochlorococcus are responsible for a large part of the carbon fixation that occurs in marine environments. Synechococcus have a broader distribution in the ocean and are less abundant in oligotrophic (low nutrient) regions. These organism utilize photosystem I and II to capture light energy. They are highly adapted to marine environments and some strains have evolved unique motility systems in order to propel themselves towards areas that contain nitrogenous compounds. An obligate photoautotroph, it has been studied extensively by an international research community with respect to acquisition of organic carbon, transport and regulation of nitrogen compounds, adaptation to nutrient stresses, and reponse to light intensity.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004668:241352 Enterococcus faecalis V583, complete genome

Lineage: Enterococcus faecalis; Enterococcus; Enterococcaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This strain is one of the first vancomycin-resistant strains isolated. This isolate came from a blood culture derived from a chronically-infected patient in 1987 from Barnes Hospital in St. Louis, Missouri, USA. This strain was found to lack the cytolysin gene and a surface adhesin, Esp, that contributes to urinary tract infections. Mobile genetic elements make up one quarter of the genome. This genera consists of organisms typically found in the intestines of mammals, although through fecal contamination they can appear in sewage, soil, and water. They cause a number of infections that are becoming increasingly a problem due to the number of antibiotic resistance mechanisms these organisms have picked up. Both Enterococcus faecalis and Enterococcus faecium cause similar diseases in humans, and are mainly distinguished by their metabolic capabilities. This opportunistic pathogen can cause urinary tract infections, bacteremia (bacteria in the blood), and infective endocarditis (inflammation of the membrane surrounding the heart), similar to infections caused by Enterococcus faecium. Hospital-acquired infections from this organism are on the rise due to the emergence of antiobiotic resistance strains. Enterococcus faecalis produces a cytolysin toxin that is encoded on various mobile genetic elements, pathogenicity islands, and conjugative plasmids. The cytolysin aids in pathogenesis, possibly by causing destruction of cells such as erythrocytes, which allows access to new nutrients for the organism.