Pre_GI: SWBIT SVG BLASTP

Query: NC_006570:1625909 Francisella tularensis subsp. tularensis Schu 4, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: This subspecies is virulent in humans, and the strain is a clinical isolate that is also virulent in an animal model. Originally isolated from a human case of tularemia in 1951. There are a large number of insertion sequences including a mariner element, which is a transposon typically found in eukaryotes and is the first instance of this element to be found in a microbe, which may have acquired it during transit through one of the insect vectors. Causative agent of tularemia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_011896:2571232 Mycobacterium leprae Br4923, complete genome

Lineage: Mycobacterium leprae; Mycobacterium; Mycobacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain was isolated from a human skin biopsy in Brazil, and passaged in nude mice and armadillos. The bacterium is a close relative of M. tuberculosis. However, compared to the latter, the genome of M. leprae is smaller due to reductive genome evolution, with many important metabolic activities including siderophore production, part of the oxidative chain, most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits eliminated due to extensive recombination events between dispersed repetitive sequences. It is evident that this species has undergone massive genome reduction over time as a result of its parasitic nature, discarding more than half its genes and rendering it the most striking example of genome reduction in a microbial pathogen.