Pre_GI: SWBIT SVG BLASTP

Query: NC_006526:1976779 Zymomonas mobilis subsp. mobilis ZM4, complete genome

Lineage: Zymomonas mobilis; Zymomonas; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from fermenting sugarcane juice. Ethanol producer. The natural habitat of this organism includes sugar-rich plant saps where the bacterium ferments sugar to ethanol. The high conversion of sugars to ethanol makes this organism useful in industrial production systems, particularly in production of bioethanol for fuel. A recombinant strain of this bacterium is utilized for the conversion of sugars, particularly xylose, which is not utilized by another common sugar-fermenting organism such as yeast, to ethanol. Since xylose is a common breakdown product of cellulose or a waste component of the agricultural industry, it is an attractive source for ethanol production. Zymomonas mobilis was chosen for this process as it is ethanol-tolerant (up to 120 grams of ethanol per litre) and productive (5-10% more ethanol than Saccharomyces). This bacterium ferments using the Enter-Doudoroff pathway, with the result that less carbon is used in cellular biomass production and more ends up as ethanol, another factor that favors this organism for ethanol production.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_015186:2908387 Acidiphilium multivorum AIU301, complete genome

Lineage: Acidiphilium multivorum; Acidiphilium; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Thiosulfate oxidation. Acidophilic, aerobic, anoxygenic, phototrophic, Gram-negative bacterium isolated from pyritic acid mine drainage. A.multivorum has high ability of resistance to various metals under acidic condition, and require high acidity for growth. It exhibits tolerance towards some heavy metal ions like nickel, zinc, cadmium and copper, and resistance to arsenate and arsenite.