Pre_GI: SWBIT SVG BLASTP

Query: NC_006511:4119332 Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This serovar has a narrow host range and causes a typhoid-like (paratyphoid fever) illness in humans. It is especially prevalent in southern and eastern Asia, and has been associated with some particularly virulent outbreaks. A number of isolates are increasingly antibiotic resistant. Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_009718:1272296 Fervidobacterium nodosum Rt17-B1, complete genome

Lineage: Fervidobacterium nodosum; Fervidobacterium; Thermotogaceae; Thermotogales; Thermotogae; Bacteria

General Information: Fervidobacterium nodosum is a thermophilic, Gram-negative, motile, non-sporulating, glycolytic, obligately anaerobic rod that exists singly, in pairs or in chains. Fervidobacterium nodosum was isolated from a hot spring in New Zealand. Its optimal growth temperature is 65 to 70 degrees Celsius. The cellular morphology of this organism, a member of the Thermotogales, is characterized by a terminal spherical extension of the cell envelope.